On classical rings of quotients of duo rings

Michał Ziembowski

Warsaw University of Technology

Lens
 02.07.2013

Let R be a ring and S a multiplicative set in R (i.e. $S \cdot S \subseteq S, 1 \in S$, and $0 \notin S$). Then a ring $R S^{-1}$ is called a right ring of quotients of R with respect to S if there exists a ring homomorphism $\varphi: R \rightarrow R S^{-1}$ such that
(a) For any $s \in S, \varphi(s)$ is a unit of $R S^{-1}$.
(b) Every element of $R S^{-1}$ has the form $\varphi(a) \varphi(s)^{-1}$ for some $a \in R$ and $s \in S$.
(c) $\operatorname{ker} \varphi=\{r \in R: r s=0$ for some $s \in S\}$.

It is well known that the ring R has a right ring of quotients with respect to S if and only if the following conditions are satisfied:
(1) For any $a \in R$ and $s \in S, a S \cap s R \neq \emptyset$.
(2) For $a \in R$, if $t a=0$ for some $t \in S$, then $a s=0$ for some $s \in S$.

A multiplicative set S satisfying the above conditions (1) and (2) is called a right denominator set.

- If the set S consists of all regular elements of R (i.e. all elements $a \in R$ such that a is neither a left zero-divisor nor a right zero-divisor of R), then the right ring of quotients $R S^{-1}$ is called the classical right ring of quotients of R and is denoted by $Q_{c l}^{r}(R)$.
- If the set S consists of all regular elements of R (i.e. all elements $a \in R$ such that a is neither a left zero-divisor nor a right zero-divisor of R), then the right ring of quotients $R S^{-1}$ is called the classical right ring of quotients of R and is denoted by $Q_{c l}^{r}(R)$.
- In the same way we can consider left sided version of above and get a left ring of quotients $S^{-1} R$ of R with respect to a left denominator set S and the classical left ring of quotients of R which is denoted by $Q_{c l}^{\prime}(R)$.
- A ring R is right duo (respectively left duo) if any right (resp. left) ideal of R is a two-sided ideal. If R is left and right duo, then we say that R is a duo ring.
- A ring R is right duo (respectively left duo) if any right (resp. left) ideal of R is a two-sided ideal. If R is left and right duo, then we say that R is a duo ring.
- Recently P.P. Nielsen et al. posed the following.

Question
 If a ring R is duo, is $Q_{c l}^{r}(R)\left(=Q_{c l}^{\prime}(R)\right)$ duo?

- A ring R is right duo (respectively left duo) if any right (resp. left) ideal of R is a two-sided ideal. If R is left and right duo, then we say that R is a duo ring.
- Recently P.P. Nielsen et al. posed the following.

Question

If a ring R is duo, is $Q_{c l}^{r}(R)\left(=Q_{c l}^{\prime}(R)\right)$ duo?

- In this talk we want to show that there exists a duo ring R such that its classical right ring of quotients $Q_{c l}^{r}(R)$ is left duo and not right duo. Using mentioned construction we will built up a duo ring with classical right ring of quotients which is neither right nor left duo.

Proposition 1

Let R be a right (resp. left) duo ring and P an ideal of R such that $S=R \backslash P$ is a right (resp. left) denominator set in R. Then $R S^{-1}$ (resp.
$S^{-1} R$) is right (resp. left) duo if and only if for any $a \in R$ we have $S a \subseteq a S$ or as $=0(r e s p . a S \subseteq S a$ or sa $=0$) for some $s \in S$.

- Let G be the free abelian group generated by the set $\left\{x_{i}: i \in \mathbb{Z}\right\}$ and let φ be an endomorphism of G defined by

$$
\varphi\left(x_{i}\right)=x_{i+1} \text { for any } i \in \mathbb{Z}
$$

- Let G be the free abelian group generated by the set $\left\{x_{i}: i \in \mathbb{Z}\right\}$ and let φ be an endomorphism of G defined by

$$
\varphi\left(x_{i}\right)=x_{i+1} \text { for any } i \in \mathbb{Z}
$$

- Given an element $g \in G$, we can write $g=x_{\ell_{1}}^{k_{1}} x_{\ell_{2}}^{k_{2}} \cdots x_{\ell_{n}}^{k_{n}}$ where $\ell_{1}<\ell_{2}<\cdots<\ell_{n}$ and $k_{i} \in \mathbb{Z}-\{0\}$. We call this the canonical representation for g. We call k_{n} the final exponent and we call $x_{\ell_{n}}$ the final component. (The canonical representation of $g=1$ is somewhat special, being an empty product of such terms, and we write $g=1$.)
- Let G be the free abelian group generated by the set $\left\{x_{i}: i \in \mathbb{Z}\right\}$ and let φ be an endomorphism of G defined by

$$
\varphi\left(x_{i}\right)=x_{i+1} \text { for any } i \in \mathbb{Z}
$$

- Given an element $g \in G$, we can write $g=x_{\ell_{1}}^{k_{1}} x_{\ell_{2}}^{k_{2}} \cdots x_{\ell_{n}}^{k_{n}}$ where $\ell_{1}<\ell_{2}<\cdots<\ell_{n}$ and $k_{i} \in \mathbb{Z}-\{0\}$. We call this the canonical representation for g. We call k_{n} the final exponent and we call $x_{\ell_{n}}$ the final component. (The canonical representation of $g=1$ is somewhat special, being an empty product of such terms, and we write $g=1$.)
- For any $g_{1}, g_{2} \in G$ we write $g_{1} \prec g_{2}$ if $g_{1} \neq g_{2}$ and $g_{1}^{-1} g_{2}$ has a (strictly) positive final exponent.
- Let G be the free abelian group generated by the set $\left\{x_{i}: i \in \mathbb{Z}\right\}$ and let φ be an endomorphism of G defined by

$$
\varphi\left(x_{i}\right)=x_{i+1} \text { for any } i \in \mathbb{Z}
$$

- Given an element $g \in G$, we can write $g=x_{\ell_{1}}^{k_{1}} x_{\ell_{2}}^{k_{2}} \cdots x_{\ell_{n}}^{k_{n}}$ where $\ell_{1}<\ell_{2}<\cdots<\ell_{n}$ and $k_{i} \in \mathbb{Z}-\{0\}$. We call this the canonical representation for g. We call k_{n} the final exponent and we call $x_{\ell_{n}}$ the final component. (The canonical representation of $g=1$ is somewhat special, being an empty product of such terms, and we write $g=1$.)
- For any $g_{1}, g_{2} \in G$ we write $g_{1} \prec g_{2}$ if $g_{1} \neq g_{2}$ and $g_{1}^{-1} g_{2}$ has a (strictly) positive final exponent.
- It is easy to see that (G, \preceq) is a totally ordered group and for any $g_{1}, g_{2} \in G, g_{1} \prec g_{2}$ implies $\varphi\left(g_{1}\right) \prec \varphi\left(g_{2}\right)$.
- To construct the desired ring R, we first consider the set T of all pairs $(m, g) \in \mathbb{Z} \times G$ such that either $m>0$, or $m=0$ and $g \succeq 1$.
- To construct the desired ring R, we first consider the set T of all pairs $(m, g) \in \mathbb{Z} \times G$ such that either $m>0$, or $m=0$ and $g \succeq 1$.
- We define a multiplication and order relation on T in the following way. For $\left(m_{1}, g_{1}\right),\left(m_{2}, g_{2}\right) \in T$ we define

$$
\left(m_{1}, g_{1}\right)\left(m_{2}, g_{2}\right)=\left(m_{1}+m_{2}, \varphi^{m_{2}}\left(g_{1}\right) g_{2}\right)
$$

and

$$
\left(m_{1}, g_{1}\right) \leq\left(m_{2}, g_{2}\right) \Leftrightarrow \text { either } m_{1}<m_{2} \text { or } m_{1}=m_{2} \text { and } g_{1} \preceq g_{2}
$$

- To construct the desired ring R, we first consider the set T of all pairs $(m, g) \in \mathbb{Z} \times G$ such that either $m>0$, or $m=0$ and $g \succeq 1$.
- We define a multiplication and order relation on T in the following way. For $\left(m_{1}, g_{1}\right),\left(m_{2}, g_{2}\right) \in T$ we define

$$
\left(m_{1}, g_{1}\right)\left(m_{2}, g_{2}\right)=\left(m_{1}+m_{2}, \varphi^{m_{2}}\left(g_{1}\right) g_{2}\right)
$$

and

$$
\left(m_{1}, g_{1}\right) \leq\left(m_{2}, g_{2}\right) \Leftrightarrow \text { either } m_{1}<m_{2} \text { or } m_{1}=m_{2} \text { and } g_{1} \preceq g_{2}
$$

- It is easy to verify that (T, \leq) is a positively strictly totally ordered monoid with $(0,1)$ as a unity (an ordered monoid (T, \cdot, \leq) is positively ordered if $s \geq 1$ for any $s \in T$).
- Let D be a division ring. Then we consider the set $D[[T]]$ of formal power series of the form

$$
f=\sum_{t \in T} a_{t} t, \quad\left(a_{t} \in R\right)
$$

which $\operatorname{supp}(f)=\left\{t \in T: a_{t} \neq 0\right\}$ is well-ordered set.

- Let D be a division ring. Then we consider the set $D[[T]]$ of formal power series of the form

$$
f=\sum_{t \in T} a_{t} t, \quad\left(a_{t} \in R\right)
$$

which $\operatorname{supp}(f)=\left\{t \in T: a_{t} \neq 0\right\}$ is well-ordered set.

- We define the product $f g$ of

$$
f=\sum_{v \in T} a_{v} v, g=\sum_{w \in T} b_{w} w
$$

as follows:

$$
f g=\sum_{t \in T} c_{t} t \text { with } c_{t}=\sum_{v w=t} a_{v} b_{w}
$$

- Let D be a division ring. Then we consider the set $D[[T]]$ of formal power series of the form

$$
f=\sum_{t \in T} a_{t} t, \quad\left(a_{t} \in R\right)
$$

which $\operatorname{supp}(f)=\left\{t \in T: a_{t} \neq 0\right\}$ is well-ordered set.

- We define the product $f g$ of

$$
f=\sum_{v \in T} a_{v} v, g=\sum_{w \in T} b_{w} w
$$

as follows:

$$
f g=\sum_{t \in T} c_{t} t \text { with } c_{t}=\sum_{v w=t} a_{v} b_{w}
$$

- With pointwise addition and multiplication as defined above, $D[[T]]$ becomes a ring.
- A ring (resp. monoid) R is said to be a right chain ring (resp. monoid) if the right ideals of R are totally ordered by set inclusion, i.e., if $a R \subseteq b R$ or $b R \subseteq a R$ for any $a, b \in R$. Left chain rings (resp. monoids) are defined similarly. If R is left and right chain, then we say that R is a chain ring (resp. monoid).
- A ring (resp. monoid) R is said to be a right chain ring (resp. monoid) if the right ideals of R are totally ordered by set inclusion, i.e., if $a R \subseteq b R$ or $b R \subseteq a R$ for any $a, b \in R$. Left chain rings (resp. monoids) are defined similarly. If R is left and right chain, then we say that R is a chain ring (resp. monoid).
- Fact 1. The monoid T is chain.
- A ring (resp. monoid) R is said to be a right chain ring (resp. monoid) if the right ideals of R are totally ordered by set inclusion, i.e., if $a R \subseteq b R$ or $b R \subseteq a R$ for any $a, b \in R$. Left chain rings (resp. monoids) are defined similarly. If R is left and right chain, then we say that R is a chain ring (resp. monoid).
- Fact 1. The monoid T is chain.
- Fact 2. The ring $D[[T]]$ is chain and duo.
- For an element $f \in D[[T]]$ by $\pi(f)$ we denote the minimal element of $\operatorname{supp}(f)$.
- For an element $f \in D[[T]]$ by $\pi(f)$ we denote the minimal element of $\operatorname{supp}(f)$.
- It is clear that the set

$$
I=\{0\} \cup\left\{f \in R \backslash\{0\}: \pi(f)>\left(1, x_{1}^{i} x_{2}^{j} x_{3}\right) \text { for any } i, j \in \mathbb{Z}\right\}
$$

is a proper ideal of R. Now we consider the ring

$$
R=D[[T]] / I
$$

In what follows the "bars" refer to modulo I, that is $\bar{f}=f+I$ for any $f \in R$.

- For an element $f \in D[[T]]$ by $\pi(f)$ we denote the minimal element of $\operatorname{supp}(f)$.
- It is clear that the set

$$
I=\{0\} \cup\left\{f \in R \backslash\{0\}: \pi(f)>\left(1, x_{1}^{i} x_{2}^{j} x_{3}\right) \text { for any } i, j \in \mathbb{Z}\right\}
$$

is a proper ideal of R. Now we consider the ring

$$
R=D[[T]] / I
$$

In what follows the "bars" refer to modulo I, that is $\bar{f}=f+I$ for any $f \in R$.

- Since $D[[T]]$ is a duo chain ring, so is R. So the set P of those elements of R that are right or left zero-divisors is an ideal of R, and $S=R \backslash P$ is a right and left denominator set in R. Hence we can consider a right and left ring of quotients $R S^{-1}$ and $S^{-1} R$.
- For an element $f \in D[[T]]$ by $\pi(f)$ we denote the minimal element of $\operatorname{supp}(f)$.
- It is clear that the set

$$
I=\{0\} \cup\left\{f \in R \backslash\{0\}: \pi(f)>\left(1, x_{1}^{i} x_{2}^{j} x_{3}\right) \text { for any } i, j \in \mathbb{Z}\right\}
$$

is a proper ideal of R. Now we consider the ring

$$
R=D[[T]] / I
$$

In what follows the "bars" refer to modulo I, that is $\bar{f}=f+I$ for any $f \in R$.

- Since $D[[T]]$ is a duo chain ring, so is R. So the set P of those elements of R that are right or left zero-divisors is an ideal of R, and $S=R \backslash P$ is a right and left denominator set in R. Hence we can consider a right and left ring of quotients $R S^{-1}$ and $S^{-1} R$.
- Note that since S coincides with the set of regular elements of R, $R S^{-1}$ and $S^{-1} R$ are the classical right and left rings of quotients, respectively, and we have

$$
R S^{-1}=Q_{c l}^{r}(R)=Q_{c l}^{\prime}(R)=S^{-1} R
$$

- Fact 3. For an element $f \in D[[T]]$ we have $\bar{f} \in S$ if and only if $\pi(f) \leq\left(0, x_{1}^{k}\right)$ for some non-negative integer k.
- Fact 3. For an element $f \in D[[T]]$ we have $\bar{f} \in S$ if and only if $\pi(f) \leq\left(0, x_{1}^{k}\right)$ for some non-negative integer k.
- Fact 4. The ring $Q_{c l}^{r}(R)$ is not right duo.
- Fact 3. For an element $f \in D[[T]]$ we have $\bar{f} \in S$ if and only if $\pi(f) \leq\left(0, x_{1}^{k}\right)$ for some non-negative integer k.
- Fact 4. The ring $Q_{c l}^{r}(R)$ is not right duo.
- Fact 5. The ring $Q_{c l}^{r}(R)$ is left duo.

Example 2

- Using the construction of the opposite ring $R^{o p}$ of R we can consider the ring $B=R \times R^{o p}$ which is duo.

Example 2

- Using the construction of the opposite ring $R^{o p}$ of R we can consider the ring $B=R \times R^{o p}$ which is duo.
- Note that the regular elements are $S \times S$, and $B \backslash S \times S$ is an ideal of B.

Example 2

- Using the construction of the opposite ring $R^{o p}$ of R we can consider the ring $B=R \times R^{o p}$ which is duo.
- Note that the regular elements are $S \times S$, and $B \backslash S \times S$ is an ideal of B.
- We know that there exist $a \in R$ and $s \in S$ such that sa $\notin a S$.

Example 2

- Using the construction of the opposite ring $R^{o p}$ of R we can consider the ring $B=R \times R^{o p}$ which is duo.
- Note that the regular elements are $S \times S$, and $B \backslash S \times S$ is an ideal of B.
- We know that there exist $a \in R$ and $s \in S$ such that sa $\notin a S$.
- Thus for $(a, a) \in B$ and $(s, s) \in S \times S$ we have $(s, s)(a, a) \notin(a, a)(S \times S)$ and $(a, a)(s, s) \notin(S \times S)(a, a)$. So using Proposition 1 we deduce that $Q_{c l}^{r}(B)$ is neither right duo nor left duo.

THANK YOU FOR YOUR ATTENTION.

