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Let R be a ring and S a multiplicative set in R (i.e. S · S ⊆ S , 1 ∈ S , and
0 6∈ S). Then a ring RS−1 is called a right ring of quotients of R with
respect to S if there exists a ring homomorphism ϕ : R → RS−1 such that

(a) For any s ∈ S , ϕ(s) is a unit of RS−1.

(b) Every element of RS−1 has the form ϕ(a)ϕ(s)−1 for some a ∈ R and
s ∈ S .

(c) kerϕ = {r ∈ R : rs = 0 for some s ∈ S}.
It is well known that the ring R has a right ring of quotients with respect
to S if and only if the following conditions are satisfied:

(1) For any a ∈ R and s ∈ S , aS ∩ sR 6= ∅.
(2) For a ∈ R, if ta = 0 for some t ∈ S , then as = 0 for some s ∈ S .

A multiplicative set S satisfying the above conditions (1) and (2) is called
a right denominator set.
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If the set S consists of all regular elements of R (i.e. all elements
a ∈ R such that a is neither a left zero-divisor nor a right zero-divisor
of R), then the right ring of quotients RS−1 is called the classical
right ring of quotients of R and is denoted by Qr

cl(R).

In the same way we can consider left sided version of above and get a
left ring of quotients S−1R of R with respect to a left denominator
set S and the classical left ring of quotients of R which is denoted by
Q l

cl(R).
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A ring R is right duo (respectively left duo) if any right (resp. left)
ideal of R is a two-sided ideal. If R is left and right duo, then we say
that R is a duo ring.

Recently P.P. Nielsen et al. posed the following.

Question

If a ring R is duo, is Qr
cl(R) (= Q l

cl(R)) duo?

In this talk we want to show that there exists a duo ring R such that
its classical right ring of quotients Qr

cl(R) is left duo and not right
duo. Using mentioned construction we will built up a duo ring with
classical right ring of quotients which is neither right nor left duo.
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Proposition 1

Let R be a right (resp. left) duo ring and P an ideal of R such that
S = R \ P is a right (resp. left) denominator set in R. Then RS−1 (resp.
S−1R) is right (resp. left) duo if and only if for any a ∈ R we have
Sa ⊆ aS or as = 0 (resp. aS ⊆ Sa or sa = 0) for some s ∈ S.
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Let G be the free abelian group generated by the set {xi : i ∈ Z} and
let ϕ be an endomorphism of G defined by

ϕ(xi ) = xi+1 for any i ∈ Z.

Given an element g ∈ G , we can write g = xk1
`1

xk2
`2
· · · xkn

`n
where

`1 < `2 < · · · < `n and ki ∈ Z− {0}. We call this the canonical
representation for g . We call kn the final exponent and we call x`n the
final component. (The canonical representation of g = 1 is somewhat
special, being an empty product of such terms, and we write g = 1.)

For any g1, g2 ∈ G we write g1 ≺ g2 if g1 6= g2 and g−11 g2 has a
(strictly) positive final exponent.

It is easy to see that (G ,�) is a totally ordered group and for any
g1, g2 ∈ G , g1 ≺ g2 implies ϕ(g1) ≺ ϕ(g2).

M. Ziembowski (WUoT) On classical rings of quotients of duo rings Lens 02.07.2013 6 / 13



Let G be the free abelian group generated by the set {xi : i ∈ Z} and
let ϕ be an endomorphism of G defined by

ϕ(xi ) = xi+1 for any i ∈ Z.

Given an element g ∈ G , we can write g = xk1
`1

xk2
`2
· · · xkn

`n
where

`1 < `2 < · · · < `n and ki ∈ Z− {0}. We call this the canonical
representation for g . We call kn the final exponent and we call x`n the
final component. (The canonical representation of g = 1 is somewhat
special, being an empty product of such terms, and we write g = 1.)

For any g1, g2 ∈ G we write g1 ≺ g2 if g1 6= g2 and g−11 g2 has a
(strictly) positive final exponent.

It is easy to see that (G ,�) is a totally ordered group and for any
g1, g2 ∈ G , g1 ≺ g2 implies ϕ(g1) ≺ ϕ(g2).

M. Ziembowski (WUoT) On classical rings of quotients of duo rings Lens 02.07.2013 6 / 13



Let G be the free abelian group generated by the set {xi : i ∈ Z} and
let ϕ be an endomorphism of G defined by

ϕ(xi ) = xi+1 for any i ∈ Z.

Given an element g ∈ G , we can write g = xk1
`1

xk2
`2
· · · xkn

`n
where

`1 < `2 < · · · < `n and ki ∈ Z− {0}. We call this the canonical
representation for g . We call kn the final exponent and we call x`n the
final component. (The canonical representation of g = 1 is somewhat
special, being an empty product of such terms, and we write g = 1.)

For any g1, g2 ∈ G we write g1 ≺ g2 if g1 6= g2 and g−11 g2 has a
(strictly) positive final exponent.

It is easy to see that (G ,�) is a totally ordered group and for any
g1, g2 ∈ G , g1 ≺ g2 implies ϕ(g1) ≺ ϕ(g2).

M. Ziembowski (WUoT) On classical rings of quotients of duo rings Lens 02.07.2013 6 / 13



Let G be the free abelian group generated by the set {xi : i ∈ Z} and
let ϕ be an endomorphism of G defined by

ϕ(xi ) = xi+1 for any i ∈ Z.

Given an element g ∈ G , we can write g = xk1
`1

xk2
`2
· · · xkn

`n
where

`1 < `2 < · · · < `n and ki ∈ Z− {0}. We call this the canonical
representation for g . We call kn the final exponent and we call x`n the
final component. (The canonical representation of g = 1 is somewhat
special, being an empty product of such terms, and we write g = 1.)

For any g1, g2 ∈ G we write g1 ≺ g2 if g1 6= g2 and g−11 g2 has a
(strictly) positive final exponent.

It is easy to see that (G ,�) is a totally ordered group and for any
g1, g2 ∈ G , g1 ≺ g2 implies ϕ(g1) ≺ ϕ(g2).

M. Ziembowski (WUoT) On classical rings of quotients of duo rings Lens 02.07.2013 6 / 13



To construct the desired ring R, we first consider the set T of all
pairs (m, g) ∈ Z× G such that either m > 0, or m = 0 and g � 1.

We define a multiplication and order relation on T in the following
way. For (m1, g1), (m2, g2) ∈ T we define

(m1, g1)(m2, g2) = (m1 + m2, ϕ
m2(g1)g2),

and

(m1, g1) ≤ (m2, g2) ⇔ either m1 < m2 or m1 = m2 and g1 � g2.

It is easy to verify that (T ,≤) is a positively strictly totally ordered
monoid with (0, 1) as a unity (an ordered monoid (T , ·,≤) is
positively ordered if s ≥ 1 for any s ∈ T ).
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Let D be a division ring. Then we consider the set D[[T ]] of formal
power series of the form

f =
∑
t∈T

att, (at ∈ R)

which supp(f ) = {t ∈ T : at 6= 0} is well-ordered set.

We define the product fg of

f =
∑
v∈T

avv , g =
∑
w∈T

bww

as follows:
fg =

∑
t∈T

ctt with ct =
∑
vw=t

avbw .

With pointwise addition and multiplication as defined above, D[[T ]]
becomes a ring.
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A ring (resp. monoid) R is said to be a right chain ring (resp.
monoid) if the right ideals of R are totally ordered by set inclusion,
i.e., if aR ⊆ bR or bR ⊆ aR for any a, b ∈ R. Left chain rings (resp.
monoids) are defined similarly. If R is left and right chain, then we
say that R is a chain ring (resp. monoid).

Fact 1. The monoid T is chain.

Fact 2. The ring D[[T ]] is chain and duo.
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For an element f ∈ D[[T ]] by π(f ) we denote the minimal element of
supp(f ).

It is clear that the set

I = {0} ∪ {f ∈ R \ {0} : π(f ) > (1, x i
1x j

2x3) for any i , j ∈ Z}

is a proper ideal of R. Now we consider the ring

R = D[[T ]]/I .

In what follows the “bars” refer to modulo I , that is f = f + I for any
f ∈ R.

Since D[[T ]] is a duo chain ring, so is R. So the set P of those
elements of R that are right or left zero-divisors is an ideal of R, and
S = R \ P is a right and left denominator set in R. Hence we can
consider a right and left ring of quotients RS−1 and S−1R.

Note that since S coincides with the set of regular elements of R,
RS−1 and S−1R are the classical right and left rings of quotients,
respectively, and we have

RS−1 = Qr
cl(R) = Q l

cl(R) = S−1R.
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Fact 3. For an element f ∈ D[[T ]] we have f ∈ S if and only if
π(f ) ≤ (0, xk

1 ) for some non-negative integer k .

Fact 4. The ring Qr
cl(R) is not right duo.

Fact 5. The ring Qr
cl(R) is left duo.
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Example 2

Using the construction of the opposite ring Rop of R we can consider
the ring B = R × Rop which is duo.

Note that the regular elements are S × S , and B \ S × S is an ideal of
B.

We know that there exist a ∈ R and s ∈ S such that sa /∈ aS .

Thus for (a, a) ∈ B and (s, s) ∈ S × S we have
(s, s)(a, a) /∈ (a, a)(S × S) and (a, a)(s, s) /∈ (S × S)(a, a). So using
Proposition 1 we deduce that Qr

cl(B) is neither right duo nor left duo.
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THANK YOU FOR YOUR ATTENTION.
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